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Abstract

We consider a linear elastic composite medium\ which consists of a homogeneous matrix containing
aligned ellipsoidal uncoated or coated inclusions arranged in a periodic array and subjected to inhomo!
geneous boundary conditions[ The hypothesis of e}ective _eld homogeneity near the inclusions is used[ The
general integral equation obtained reduces the analysis of in_nite number of inclusion problems to the
analysis of a _nite number of inclusions in some representative volume element "RVE#[ The integral equation
is solved by the Fourier transform method as well as by the iteration method of the Neumann series " _rst!
order approximation#[ The nonlocal macroscopic constitutive equation relating the unit cell averages of
stress and strain is derived in explicit closed forms either of a di}erential equation of a second!order or of
an integral equation[ The employed of explicit relations for numerical estimations of tensors describing the
local and nonlocal e}ective elastic properties as well as average stresses in the composites containing simple
cubic lattices of rigid inclusions and voids are considered[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

A considerable number of methods are known in the linear theory of random structure matrix
composites which yield the e}ective elastic constants and stress _eld averages in the component[
Appropriate\ but by no means exhaustive\ references are provided by the reviews of Willis "0871\
0872#\ Mura "0876#\ Kreher and Pompe "0878#\ Buryachenko and Parton "0881#\ Nemat!Nasser
and Hori "0882#\ Buryachenko "0885#[ A new method has been proposed recently[ This is the
multiparticle e}ective _eld method "MEFM#\ put forward and developed by the present author
"references may be found in the survey of Buryachenko and Parton\ 0881\ Buryachenko and
Kreher\ 0884#[ For random structure composites MEFM is based on the theory of functions of
random variables and Green|s functions[ Within this method one constructs a hierarchy of stat!
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istical moment equations for conditional averages of the stresses in the inclusions[ The hierarchy
is then cut by introducing the notion of an e}ective _eld[ This way the interaction of di}erent
inclusions is taken into account[ Buryachenko and Parton "0881# demonstrated that the MEFM
includes\ as particular cases\ the well!known methods of mechanics of strongly heterogeneous
media such as the e}ective medium "Kro�ner\ 0850^ Hill\ 0854# and the mean _eld "Mori and
Tanaka\ 0862^ Benveniste\ 0876# methods[

This paper deals with composite media which consist of a homogeneous matrix containing the
triply periodical sets of inclusions of ellipsoidal form[ The periodic structure of composite is very
attractive because it provides the estimation of interaction e}ects for an in_nite number of
inclusions[ This interaction greatly in~uences the composite elastic properties\ especially for the
strongly heterogeneous materials with a high inclusion concentration[ The periodicity of structures
gives the possibility of _nding an analytical "or numerical# solution of the corresponding periodic
boundary!value problem with controlled accuracy[

For periodic structure composites there are di}erent methods for solving the cell problem[
The method of Eshelby transformation strain\ taking account of the variability of the _eld of
transformation strain within the inclusion\ has been proposed by Nemat!Nasser et al[ "0871#[
However\ because they used very slowly converging series\ their approach is hardly applicable[
Using the periodic fundamental solution for an isotropic medium by Hasimoto "0848# numerical
values of the e}ective characteristics of dispersionally reinforced composites with isotropic com!
ponents were obtained by Sangani and Lu "0876# by multiple expansions[ These authors extended
a collocation technique employed by Nunan and Keller "0873#[ Media with arbitrary elastic
anisotropy were considered by Kuznetsov "0882#[ Kushch "0886# analyzed the elastic isotropic
medium containing several triply periodic lattices of aligned spheroidal isotropic inclusions with
di}erent size\ shape and properties[

By virtue of the fact that a periodic structure is a particle case of random structure\ Buryachenko
and Parton "0881# applied MEFM to the analysis of periodic structures[ They used the main
hypothesis of many micromechanical methods\ according to which each inclusion is located inside
a homogeneous so!called e}ective _eld[ Note that in the framework of the popular simpli_cation\
the surrounding inclusions are simulated by the singular sources of polarization strains located at
the centers of inclusions "see e[g[ Kunin\ 0872#[ In a proposed method by Buryachenko and Parton
"0875#\ the approximation is in the spirit of the Saint!Venant principle so that the e}ective _eld is
uniformly distributed inside the inclusion[ At the same time Kachanov "0876# proposed a similar
approach for a particular case of ellipsoidal cavities "microcracks#[ Buryachenko and Parton
"0881# reduced the system of integral equations to a linear algebraic system of equations with
respect to e}ective _elds^ the number of unknowns is _nite in the case of periodic structure[ The
_nal solution was obtained for the general case of coated inclusions and any ellipsoidal shape of a
representative volume element "RVE#[ They justi_ed the locality principle for the particular case
of simple cubic packing of the spherical inclusions\ when the maximum error of the using of the
RVE "in excess of the distance between the inclusions in three times# is smaller than 1)[ More
recently the same problem has also been considered by the use of some additional unnecessary
assumptions[ So Rodin "0882# proposed a di}erent equivalent approach based on the eigenstrain
method^ the convergence of integral representations was justi_ed for media with an isotropic
matrix containing homogeneous spherical inclusions[ Molinari and Mouden "0885# analyzed the
analogous problem for the spherical RVE[
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The assumption usually used is that all characteristic lengths associated with the spatial variations
of the mean _eld quantities are large compared to all characteristic lengths associated with the
spatial variations in the material properties[ Then the governing equations for the mean _eld are
identical in form to the familiar equations for a homogeneous solid with material properties
replaced by e}ective properties[ The breakdown of this condition mentioned above leads to a
nonlocal coupling between statistical averages for random structures "or average over the cell for
periodic structures# of stresses and strains which is represented easier by the integral or by
the di}erential operators[ The method of Fourier transform has been investigated in nonlocal
micromechanics of random structure composites and was used with the slight modi_cations by
Beran and McCoy "0869#\ Buryachenko and Lipanov "0881#\ Drugan and Willis "0885#\ Kho!
roshun "0885#\ Buryachenko "0887#[ As will be shown in the current paper the same approach can
be employed for the analysis of triply periodic structures[

The outline of the paper is as follows[ In Section 1 present the basic equation and geometrical
description of the composite structure\ and two kinds of averaging operators[ In Section 2 we derive
a general integral equation of elasticity of triply periodic structures subjected to inhomogeneous
boundary conditions^ the equations obtained reduce the analysis of in_nite numbers of inclusion
problems to the analysis of a _nite number of inclusions[ In order to simplify the general integral
system one assumes the e}ective _eld hypothesis[ In Section 3 the entire set of equations is
transformed from real space to Fourier transform space and an algebraic solution for the e}ective
average strain _eld formally obtained in the transformed space^ the inverse transformation trans!
forms this algebraic solution into a di}erential operator of the second order in real space[ A
common integral representation of the solution is derived by the iteration method[ Once the
average e}ective _eld is obtained\ the e}ective local and nonlocal properties of the composite
material are calculated via the homogenized relation in Section 4[ Finally\ in Section 5 we employ
the proposed explicit relations for numerical estimations of tensors describing the local and
nonlocal e}ective elastic properties of composites containing simple cubic lattices of rigid inclusions
and voids[ The local and nonlocal parts of average stresses are estimated by both the Fourier
transform method and by the iteration method[

1[ Preliminaries

1[0[ Basic equations

The paper discusses a certain representative mesodomain w with a characteristic function W
containing a set X �"vi# of inclusions vi with characteristic functions Vi "i � 0\ 1\ [ [ [#[ At _rst no
restrictions are imposed on the elastic symmetry of the phases or on the geometry of the inclusions[
It is assumed that the inclusions can be grouped into component v"0# with identical mechanical and
geometrical properties[ The local strain tensor o is related to the displacements u via the linearized
strainÐdisplacement equation

o � 0
1
ð9 & u¦"9 & u#TŁ[ "1[0#

Here & denotes tensor product\ and "=#T denotes matrix transposition[ The stress tensor s\ satis_es
the equilibrium equation "no body forces acting#]
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9s � 9[ "1[1#

Stresses and strains are related to each other via the constitutive equation

s"x# � L"x#o"x#[ "1[2#

L"x# are the known phase sti}ness fourth!order tensors\ and the common notations for scalar
products have been employed] Lo � Lijklokl\ ox � oijxj[ The tensor L of material properties is
decomposed as L 0 L"9#¦L0"x#[ L is assumed to be constant in the matrix v"9# � w:v and is an
inhomogeneous function inside the inclusions]

L"x# � 6
L"9# for x $ v"9#\

L"9#¦L"0#
0 "x# for x $ v"0#[

"1[3#

Here and in the following the upper index "k# "k � 9\ 0# numbers the components and the lower
index i numbers the individual conclusions^ v"0# 0 k vi\ "i � 0\ 1\ [ [ [#[

We assume that the phases are perfectly bonded\ so that the displacements and the traction
components are continuous across the interphase boundaries[ We take nonuniform strain boundary
conditions for the mesodomain w

u"x# � u9"x#\ o9"x# 0 0
1
ð9 & u9"x#¦"9 & u9"x##TŁ\ x $ 1w\ "1[4#

where o9"x# is a given nonuniform symmetric tensor\ representing the macroscopic strain state in
the mesodomain w if the boundary conditions "1[4# is a homogeneous one]

o9"x# 0 o9 � const[\ x $ 1w[ "1[5#

1[1[ Geometrical description of the composite structure

It is assumed that the representative mesodomain w contains a statistically large number of
inclusions vi W v";# "i � 0\ 1\ [ [ [#[ We now consider a periodic set X of ellipsoidal inclusions with
identical shape\ orientation and mechanical properties[ We consider a composite media with
particle centers\ periodically distributed at the nodes of same spatial lattice L[ Suppose ei "i � 0\ 1\ 2#
are linearly!independent vectors of the principal period of L determine a unit cell V of volume
VÞ � =e0 ="e1 & e2# =\ so that we can represent any node m $ L in the form

xm � Smiei\ "1[6#

where m �"m0\ m1\ m2# are integer!valued coordinates of the node m in periodic basis ei which are
equal in modulus to =ei=[ The bar placed above the region represents its measure] VÞ � mes V[

Note that the type of the lattice L is de_ned by the law governing the variation in the coe.cients
mi "i � 0\ 1\ 2#\ and also by the magnitude and orientation of the vectors ei "see e[g[ Kuznetsov\
0880#[ If\ for example\ the basis is orthonormal\ and the coe.cients m �"m0\ m1\ m2# are the integer
set Z2\ independent of one another\ L de_nes a simple cubic "SC# packing^ in the case where the
coe.cients mi "i � 0\ 1\ 2# are either all even or odd\ we have a cubic body!centered structure
"BCC#^ a cubic face!centered structure "FCC# is obtained in that case where the coe.cients mi are
either all even or two are odd\ while the third is even[ The method of assigning the lattice L is also



V[A[ Buryachenko : International Journal of Solids and Structures 25 "0888# 2726Ð2748 2730

possible where several nodes are located within the limits of a cell\ and the coe.cients mi are the
integer set Z2\ independent of one another[

The composite material is constructed using the basic building block or generic unit cell]
w � k Vm\ vm W Vm[ Hereinafter the notations fV"x# will be used for the average of the function f

over the cell x $ Vi with the center xV
i $ Vi]

fV"x# � fV"xV
i # 0

0
VÞi gVi

f"y# dy\ x $ Vi[ "1[7#

For the periodic structures 0:VÞi 0 n � const[\ where n is a number density of inclusions[
Let Vx be a {moving averaging| cell with the center x obtained by translation of a cell Vi\ and

let for the sake of de_niteness j be a random vector uniformly distributed on Vx whose value at
z $ Vx is 8j"z# � 0:VÞ x and 8j"z# 0 9 otherwise[ Then we can de_ne the average of the function f

with respect to translations of the vector j

ðfŁx"x−y# �
0

VÞ x gVx

f"z−y# dz\ x $ Vi[ "1[8#

Let f be governed by the boundary condition "1[4# " for example f 0 o#[ Clearly for homogeneous
boundary conditions o9"x# 0 const[ "1[5# oV"x# "1[7# is an invariant with respect to the cell number i
and oV"x# � ðoŁx"x# � const[\ [x $ w[ In the general case of nonhomogeneous boundary conditions
o9"x# $ const[ "1[4# oV"x# is a step function oV"x# � oV"y# at x $ Vi and y $ Vj "i $ j# as well as
oV"x# $ ðoŁx"x# for x $ Vi[

2[ General integral equations and effective _eld hypothesis

2[0[ General inte`ral equations

From eqns "1[0#Ð"1[3# a general integral equation for s and o can be derived[ Substituting "1[2#
and "1[0# into the equilibrium eqn "1[1#\ we obtain a di}erential equation with respect to the strain
o

9L"9#o"x# � −9L0"x#o"x#\ "2[0#

which may be reduced to a symmetrized integral form

o"x# � o9"x#−9 Ð G"x−y#9ðL0"y#o"y#Ł dy\ "2[1#

where o9"x# is the strain which would exist in the medium under the same boundary conditions if
L was constant^ G is the in_nite!homogeneous!body Green|s function of the Lame� equation with
an elastic modulus tensor L"9#

9"L"9# 0
1
ð9 & G"x#¦"9 & G"x##TŁ# � −dd"x#\ "2[2#

d"x# is the Dirac delta function\ d is the unit second!order tensor[
After integration of eqn "2[1# by parts\ it is found that
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o"x# � o9"x#¦Ð U"x−y#L0"y#o"y# dy¦F 9G"x−s#L0"s#o"s#n"s# ds\ "2[3#

where the surface integration is taken over the boundary 1w of the mesodomain w\ containing a
statistically large number of inclusions^ n is the unit outward normal[ The integral operator kernel
U is de_ned by the Green tensor G "2[2#]

Uijkl"x# � ð9j9lGik"x#Ł "ij#"kl#\ "2[4#

where the notation indicates symmetrization on "i j# and "kl#[
Equation "2[3# is centered\ i[e[ from both sides of eqn "2[3# their average over the unit cell "1[8#

are subtracted

o"x# � ðoŁx"x#¦Ð "U"x−y#−ðUŁx"x−y##L0"y#o"y#"y## dy

¦F "9G"x−s#−9ðGŁx"x−s##L0"s#o"s#n"s# ds\ "2[5#

where x $ Vi[ For the analyses of integral convergence in eqn "2[5# we expand U"x−y# in Taylor
series about xV

i and integrate term by term over the unit cell Vi\ then

U"x−y# � U"xV
i −y#¦"x−xV

i #9U"xV
i −y#¦

0
1

"x−xV
i # &"x−xV

i #99U"xV
i −y#[ [ [ \

ðUŁx"x−y# � U"xV
i −y#¦

0
1VÞi gVi

"z¦x−xV
i # &"z¦x−xV

i # dz99U"xV
i −y# [ [ [ [ "2[6#

Substituting "2[6# into eqn "2[5# shows that the term in curly brackets in the volume integral is of
order O"=x−y=−3#^ at x � xV

i the indicated term is of order O"=x−y=−4#[ At a su.cient distance x

and xV
i from the boundary 1w and =x−y= : � the integration over y can be carried out inde!

pendently for both the expression in curly brackets "U"x−y#−ðUŁx"x−y## "2[5# "the function of
the {slow| variable "x−y## and the term L0"y#o"y# "the function of {fast| variable y# and therefore\
the volume integral in "2[5# converges absolutely[ In a similar manner the term in curly brackets
in the surface integral is of order either O"=x−y=−2# "at x � xV

i # or O"=x−y=−3# "at x � xV
i #\ and

the surface integral vanishes at =x−s= : �\ s $ 1w[ Moreover\ in eqn "2[5# and below in the interest
of obtaining explicit _nal expressions\ we neglect by o9"x#−ðo9Łx"x# as compared with ðoŁx"x# in
the {slowly!varying| approximation of o9"x#[

By this means eqn "2[5# is reduced to the relation

o"x# � ðoŁx"x#¦Ð "U"x−y#−ðUŁx"x−y##L0"y#o"y# dy\ "2[7#

where the volume integral converges absolutely[ The principal advantages of eqn "2[7# as compared
with the equivalent eqn "2[5# are the lack of the surface integral in eqn "2[7# and the local character
of eqn "2[7#[ The last!mentioned advantage makes it possible to reduce the analyses of in_nite
number inclusion problems to the analysis of a _nite number of inclusions located in some RVE
"see Section 5 for details#[

It should be mentioned that for triply periodic structures at the uniform boundary conditions
o9"x# 0 o9 � const[ "1[5# the term L0"y#o"y# "2[7# is an invariant with respect to the unit cell number
and eqn "2[7# can be rewritten in the form
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o"x# � oV"x#¦Ð U"x−y#"L0"y#o"y#−"L0o#V"x## dy\ "2[8#

which was previously used by Buryachenko and Parton "0881# for both "L0o#V"x# 0 const[ and
ðoŁx"x# � oV"x# 0 const[

Obtained general integral eqns "2[7# and "2[8# are valid not only for deterministic structures but
can be generalized also for a statistically homogeneous ergodic inclusion _eld as well as for
statistically inhomogeneous structures[ In the case of random structure composites let ð"=#Łst"x#
denote the statistical average for the ensemble of a _eld X and one reduces eqn "2[5# to "see
Buryachenko and Parton\ 0889#

o"x# � ðoŁst "x#¦Ð U"x−y#"L0"y#o"y#−ðL0oŁst "y## dy\ "x $ vi#\ "2[09#

as alternatives to eqn "2[7#[ In eqn "2[09# it is taken into account that\ at su.cient distance x from
the boundary 1w\ the operation of surface integration may be regarded as statistical averaging "see
e[g[ Shermergor\ 0866#[

For a statistically homogeneous ergodic _eld X ðas well as for the _eld "1[6#Ł the integral eqn
"2[09# is equivalent to those known from the literature "Levin\ 0865^ Kro�ner\ 0866^ O|Brian\ 0868^
Willis\ 0871^ Buryachenko and Lipanov\ 0875#[ Nevertheless\ for statistically inhomogeneous _eld
X ðas well as for inhomogeneous _elds either ðoŁx"x# "2[7# or ðoŁst"x# "2[09#Ł the dependence of
statistical averages ð"=#Ł"y# "2[09# of the current coordinate y is of fundamental importance[ But
even in this case the expression in curly brackets eqns "2[09# "which is a perturbation introduced
by the inclusion vi at the point y# is of order O"=x−y=−2# as =x−y= : � and the integral in eqns
"2[09# converges absolutely[ Therefore\ there are no di.culties connected with the asymptotic
behavior at the in_nity "as =x−y=−2# of the generalized functions U\ and there is no need to
postulate the form of the domain w or to resort to regularization of integrals "see e[g[ Kunin\ 0872^
Kro�ner\ 0889^ Ju and Chen\ 0883# which are divergent at in_nity and which is di.cult in the case
of statistical inhomogeneity of the _eld X ðas well as in the cases of inhomogeneous _elds either
ðoŁx"x# "2[7# or ðoŁst"x# "2[09#Ł[ Equations "2[7#Ð"2[09# are the theoretical basis of the locality
principle by Sokolkin and Tashkinov "0873#\ which uses the short!range!order e}ect in the inter!
actions of the periodic or random problem in the boundary problem for the RVE with a _nite
number of inhomogeneities[ The locality principle was justi_ed by Buryachenko and Parton "0881#
for the particular case of simple cubic packing of the spherical inclusions^ they showed that the
maximum error in using the representative volume "if the RVE dimensions are more than three
times the inclusion spacing# is smaller than 1)[

2[1[ Approximative effective _eld hypothesis

Now we de_ne the e}ective _eld o¹i"x# "x $ vi\ i � 0\ [ [ [# "generally speaking nonhomogeneous#
as a strain _eld in which the chosen inclusion vi is embedded]

o¹"x# � ðoŁx"x#¦Ð ðU"x−y#L0"y#o"y#"0−Vi"y##−ðUŁx"x−y#L0"y#o"y#Ł dy\ "x $ vi#[

"2[00#

In order to simplify the system "2[7# we now apply the main hypothesis of many micromechanical
methods\ the so!called e}ective _eld hypothesis]

"H0# Each inclusion vi has an ellipsoidal form and is located in the _eld o¹i 0 o¹"x#"x $ vi# which is
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homogeneous over the inclusion vi[ The perturbations introduced by the inclusion vj in the point
x ( vj are de_ned by the relations

Ð U"x−y#Vj"y#L0"y#o"y# dy � Tj"x−xj#o¹"xj#\

Ð ðUŁx"x−y#Vj"y#L0"y#o"y# dy � ðTjŁx"x−xj#o¹"xj#[ "2[01#

Here one introduces the tensors

Tj"x−xj# � 6
v¹−0

j Ð U"x−y#Vj"y# dyR for x ( vj\

−v¹−0
j PR for x $ vj\

ðTjŁx"x−xj# � 6
v¹−0

j Ð ðUŁx"x−y#Vj"y# dyR for x ( vj\

−v¹−0
j PR for x $ vj\

"2[02#

where the tensor P is associated with the well!known Eshelby tensor by

S � PL"9#\ S 0 −Ð U"x−y#Vj"y# dy � const[\ "x\ y $ vj#\ "2[03#

and the tensor R � const[ is de_ned later[
Then in the framework of the hypotheses "H0# and in view of the linearity of the problem there

exist constant fourth!rank tensors A"x#\ R"x#\ such that

o"x# � A"x#o¹"x#\ v¹iL0"x#o"x# � R"x#o¹"x#\ x $ vi\ "2[04#

where R"x# 0 v¹iL0"x#A"x#[ According to Eshelby|s "0850# theorem there are following relations
between the averaged tensors "2[04#

R � v¹iP
−0"I−A#\ "2[05#

where

f 0 ðf"x#Ł"i# � v¹−0
i Ð f"x#Vi"x# dx

denotes averaging over the volume of the inclusion vi and f stands for R "2[8# and for A[
For example\ for the homogeneous ellipsoidal domain vi with

L0"x# � L"0#
0 � const\ at x $ vi\ "2[06#

we get

A �"I¦PL"0#
0 #−0\ R � v¹iL

"0#
0 A[ "2[07#

From comparison between the relations "2[04# and "2[07# we see that the average elastic response
"i[e[ the tensors A\ R# of any coated inclusion vi is the same as the response of some _ctitious
ellipsoidal homogeneous inclusion with elastic moduli

Lf"0#
0 � P−0"A−0−I#\ "2[08#

which can be expressed in terms of the tensor R]

Lf"0#
0 �"v¹iI−RP#−0R[ "2[19#
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The parameters "2[08# and "2[19# of _ctitious ellipsoidal inclusions are simply a notational con!
venience[ No restrictions are imposed on the microtopology of the coated inclusions as well as on
the inhomogeneity of the stress state in the coated inclusions "see for details Buryachenko and
Rammerstorfer\ 0887#[

Strictly speaking the hypothesis "H0# cannot be satis_ed\ nevertheless Buryachenko and Parton
"0889# showed that using it provides a high precision analysis of some regular structures under the
homogeneous external loading[ Because of this we will employ the hypothesis "H0#[

3[ Estimation of effective strains in the inclusions

3[0[ The Fourier transform method

In the framework of the hypothesis "H0# the system "2[7# for the periodic structure is reduced
to

o¹"xi# � ðoŁxi
"xi#¦Ð F"xi−y#o¹"y# dy\ "3[0#

the tensor F"xi−y# introduced in eqn "3[0# is de_ned as

F"xi−y# � s
m

ðTim"xi−xm#"0−Vi"y##−ðTmŁxi
"xi−xm#Łd"y−xm#\ "3[1#

and

Tim"xi−xm# �"v¹iv¹m#−0 Ð U"x−y#Vi"x#Vm"y# dx dyR[ "3[2#

According to the de_nition "2[09# the _elds h¹ "xi# are invariants with respect to the inclusion
number i and depend on the argument x[ Since we desire an explicit representation for o¹"x# we will
approximate o¹"y# by the _rst three terms of its Tailor expansion about x]

o¹"y# ¼ o¹"x#¦"y−x#9o¹"x#¦0
1
"y−x# &"y−x#99o¹"x#[ "3[3#

Substituting "3[3# into eqn "3[0# gives

o¹"xi# � ðoŁxi
"xi#¦Ð F"xi−y# dyo¹"xi#¦Ð F0"xi−y# dy9o¹"xi#¦Ð F1"xi−y# dy99o¹"xi#\

"3[4#

where the integral operator kernels F0"xi−y# and F1"xi−y# are de_ned by the tensor F"xi−y#
"3[1#]

F0"xi−y# � F"xi−y# &"y−xi#\

F1"xi−y# � 0
1
F"xi−y# &"y−xi# &"y−xi#[ "3[5#

For triply periodic structures all integrals in eqn "3[4# are constant tensors[ Moreover\ the second
right!hand!side integral in eqn "3[4# vanishes\ because the tensor F0"xi−y# is an odd function]
F0"xi−y# � −F0"y−xi#[

Considering that eqn "3[4# is a di}erential equation with constant coe.cients\ the method of
solution that _rst comes to mind is using of Fourier transform to transform the di}erential problem
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of solving "3[4# into the division problem of solving the multiplicative equation "see e[g[ Treves\
0879#

P"ij#o¹½"j# � ðo½Ł"j#\ "3[6#

where a symbol

P"ij# � I−Ð ðF"xi−y#−F1"xi−y#j & jŁ dy "3[7#

of the di}erential operator "3[5# is a polynomial with real constant coe.cients in three real
transform variable j �"j0\ j1\ j2#T[ Here the Fourier transformation g½ "j# of a function g"x# and its
inverse are de_ned by the formulae

F"g# 0 g½ "j# � Ð g"x# e−ij=x dx\ g"x# � F−0"g½# �
0

7p2
Ð g½ "j# eij=x dj "3[8#

provided\ of course\ that the integrals on the right!hand sides of the equations are convergent[
Therefore\

o"x# �
0

7p2
Ð eij=xP−0"ij#ðo½Ł"j# dj "3[09#

should be a solution of "3[5# in view of "3[8#[ Substituting "3[7# into "3[09# and restricting the result
to terms of no greater than second!order in the expansion

P−0"ij# ¼ Y−Y & j & j\ "3[00#

we get

o"xi# � YðoŁxi
"xi#¦Y99ðoŁxi

"xi#\ "3[01#

where the local part Y of the di}erential operator "3[01# has the form

Y � ðI−Ð F"xi−y# dyŁ−0\ "3[02#

and the nonlocal part of the di}erential operator "3[01# is de_ned by the tensor

Y � Y Ð F1"xi−y# dyY[ "3[03#

To summarize\ we have found a nonlocal e}ective _eld representation for triply periodic composites
having periodic distribution of arbitrarily!shape coated inclusions and arbitrarily anisotropic
phases[

3[1[ Iteration method

Strictly speaking eqn "3[01# is de_ned at both su.ciently slowly!varying _elds ðoŁx"x# and o¹"x#\
and should be considered as an approximation of the real nonlocal operator "3[09# by the di}er!
ential operator of the second!order[ For elimination of these limitations we will represent the right!
hand!side of eqn "3[01# in the form of the integral operator[ With this aim it should be mentioned
that in addition to the method of Fourier transforms used above there are other approximate
methods which can be employed for solving Fredholm integral equations of the second kind such
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as eqn "3[0# "see e[g[ Delves and Mohamed\ 0874#[ For instance\ if the kernel of a Fredholm
integral equation of the second kind is small enough then the answer for o¹"xi# can be constructed
by the method of LiouvilleÐNeumann series proceeding by the recurrence formula

o¹"xi# "n¦0# � ðoŁxi
"xi#¦Ð F"xi−y#o¹"y# "n# dy[ "3[04#

Usually the driving term of this equation is used as an initial approximation] o¹"xi# "9# � ðoŁxi
"xi#[

However\ let us assume a su.ciently slowly!varying average _eld ðoŁxi
"xi#\ and for

ðoŁxi
"xi# 0 const[ it is known the exact solution of eqn "3[04# is given by

o¹"xi# � YðoŁxi
"xi# 0 const[ "3[05#

Then for slowly!varying average _eld ðoŁxi
"xi# it would appear reasonable to employ the value

o¹"xi# "9# � YðoŁxi
"xi# $ const[ as the zero!order approximation\ so that the _rst!order approxi!

mation can be obtained from the modi_ed recurrence relation "3[04# as follows

o"xi# � YðoŁxi
"xi#¦Ð Z"xi−y#ððoŁy"y#−ðoŁxi

"xi#Ł dy\ "3[06#

where the integral operator kernel Z"xi−y# "3[06# is de_ned by the relation

Z"xi−y# � YF"xi−y#Y[ "3[07#

It is obvious that for the homogeneous boundary conditions o9"x# 0 const[ "1[4# carries into
ðoŁy"y# 0 const[\ the right!hand!side integral in eqn "3[06# vanishes\ and the solutions "3[05# and
"3[06# coincide[

Now we prove that for su.ciently smooth average strain _elds and some additional assumptions
both the Fourier transform method and the iteration method lead to the same results[ Really\ it
has been assumed previously that the average _eld ðoŁy"y# is slowly!varying enough[ Then we can
approximate ðoŁ"y# by the _rst three terms of its Taylor expansion about xi]

ðoŁy"y# ¼ ðoŁxi
"xi#¦"y−xi#9ðoŁxi

"xi#¦
0
1
"y−xi# &"y−xi#99ðoŁxi

"xi#[ "3[08#

Substituting "3[08# into "3[06# and since Z is an even function "3[07#\ "3[06# _nally reduces to
"3[01#[ By this means for su.ciently slowly!varying average _elds ðoŁy"y# the _rst few steps of
both successive iterations and Taylor expansions in the iteration method and in the Fourier
transform method\ respectively\ lead to the same relation "3[01#[ Nevertheless\ since the Fourier
transform method employed Taylor|s expansion twice "3[3# and "3[00# one should expect that the
iteration method is a better choice between these two methods[

The method of Fourier transform used above "3[01# has been investigated in non!local micro!
mechanics of random structure composites and was used with the slight modi_cations by Beran
and McCoy "0869#\ Buryachenko and Lipanov "0881#\ Drugan and Willis "0885#\ Khoroshun
"0885#\ Buryachenko "0887#[ Nevertheless the di}erential nonlocal relation "3[01# has the dis!
advantage that it uses the concrete polynomial approximations "3[3# and "3[00# in a su.ciently
large neighbourhood\ which is sometime violented in practice[ In contrast\ the integral nonlocal
eqn "3[06# does not use the concrete representations "3[3# and "3[6#\ and can be applied with the
controlled accuracy for the analysis of a more wide class of average _elds ðoŁy"y#\ since integration
is a smoothing operation and the right!hand!side integral "3[06# is likely to be a rather smooth
function even when ðoŁy"y# is very jagged[ However\ more detailed consideration of convergence
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rates and an estimation of its accuracy for the procedures of nonlocal operators used here are
beyond the scope of the current paper "this line of research will be pursued in the forthcoming
paper by Buryachenko\ 0888#[

4[ Average strains in the components and effective elastic properties

4[0[ Avera`e strains in the components

The strain _eld inside the inclusions o"z# "z $ vi# is obtained from "2[04# and "3[01#

o"xi\ z# � A"z#YðoŁxi
"xi#¦A"z#Y99ðoŁxi

"xi#\ "4[0#

from which the representation for the average strains inside the inclusion vi follows

ðoŁ"i# � AYðoŁxi
"xi#¦AY99ðoŁxi

"xi#\ "4[1#

here the {fast| independent variable z $ vi characterizing the strain state is de_ned in local coordinate
system connected with the semiaxes of the ellipsoid vi[ There is connection between the {slow| x

and {fast| z $ vi variables] x � Smjej¦z[
The mean matrix strains follow simply from eqn "4[1# and the relation

ðoŁ9"x# �
0

c"9#
"ðoŁx"x#−c"0#ðoŁ"i##\ "4[2#

where x $ Vi:vi[ Substituting "4[1# into "2[7# gives the local strains in the matrix z $ Vi:vi in the form
of an integro!di}erential equation

o"xi\ z# � ðoŁxi
"xi#¦Ð s

m

ðTm"z−y#−ðTŁz"z−y#Łd"y−xm# = ðYðoŁy"y#¦Y99ðoŁyŁ dy[ "4[3#

When using the integral eqn "3[06# rather than di}erential dependence form of the e}ective
strain o¹"xi# on the mean strain oV"xi#\ eqns "4[0#\ "4[1# and "4[3# should be replaced by

o"xi\ z# � A"z#"YðoŁxi
"xi#¦Ð Z"xi−y#ððoŁy"y#−ðoŁxi

"xi#Ł dy#\

ðoŁ"i# � A"YðoŁxi
"xi#¦Ð Z"xi−y#ððoŁy"y#−ðoŁxi

"xi#Ł dy#\

o"xi\ z# � ðoŁxi
"xi#¦Ð s

m

ðTm"z−y#−ðTzŁz"z−y#Łd"y−xm#

= "YðoŁxm
"xm#¦Ð Z"xm−t#ððoŁt"t#−ðoŁxm

"xm#Ł dt# dy\ "4[4#

respectively[

4[1[ Effective properties of composites

Taking the average strain in the inclusions "4[1# gives a macroscopic constitutive equation that
relates ðsŁ"x# and ðoŁ"x#]

ðsŁ"x# � L�ðoŁ"x#¦L�99ðoŁ"x#\ "4[5#
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L� � L"9#¦RYn\ "4[6#

L� � RYn[ "4[7#

The treatment of the integral form of the di}erential macroscopic constitutive eqn "4[5# leads to
the nonlocal relation

ðsŁ"x# � L�ðoŁ"x#¦nR Ð Z"x−y#ððoŁy"y#−ðoŁx"x#Ł dy[ "4[8#

Let for the sake of de_niteness the composite material is subjected to a strain gradient along the
direction e2 of the orthogonal basis e0\ e1\ e2[ Then

ðoŁx"x# � f"x2#ocon\ x �"x0\ x1\ x2#T\ "4[09#

where ocon 0 const[ and f"x2# $ const[\ and a three!dimensional integral "4[8# can be reduced to
the one!dimensional

ðsŁx"x# � L�oconf"x2#¦Ð Z0"x2−y2#ð f"y2#−f"x2#Ł dy2o
con\ "4[00#

where the integral operator kernel is de_ned by the relation

Z0"x2−y2# � nR Ð Ð Z"x−y# dy0 dy1[ "4[01#

The preceding relation for the local e}ective properties L� may be simpli_ed by means of
additional assumptions[ For example\ Buryachenko and Parton "0881# obtained an expression for
L� for the ellipsoidal RVE wel[ Then the tensor L� now has a form "see details of Buryachenko
and Parton\ 0881#

L� � L"9#¦Rn 6I−P"wel#Rn− s
m�9

Tim"xi−xm#7
−0

\ xm $ wel\ "4[02#

where for the sake of de_niteness xi � x9 � 9 and the index m is a triplet] m �"m0\ m1\ m2#[ It is
assumed that xi coincides with the center of the region wel\ containing a quite large number of
inclusions xm $ wel[ In the particular case of simple cubic packing of the spherical homogeneous
inclusions Buryachenko and Parton "0881# showed that the maximum error of the using of the
spherical RVE "if the RVE dimensions are more than three times the inclusion spacing# is smaller
than 1)[ More recently the analogous result was obtained by Rodin "0882# as well as by Molinari
and Mouden "0885#[

Alternatively in "4[02# one may use a so!called point approximation "see e[g[ Kunin\ 0872#

Tij"xi−xj# � U"xi−xj#R "4[03#

which is exact for in_nitely spaced heterogeneities[ Then eqn "4[02# is reduced to

L� � L"9#¦Rn 6I−P"wel#Rn− s
m�9

U"xi−xm#R7
−0

\ xm $ wel[ "4[04#

A signi_cant error of the relation "4[04# as compared to "4[02# was demonstrated by Buryachenko
and Parton "0881# "see also Section 5#[
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5[ Numerical results

Let us consider as an example a composite consisting of isotropic homogeneous components
and having identical spherical inclusions L"i# �"2k"i#\ 1m"i## 0 2k"i#N0¦1m"i#N1\ "N0 � d & d:2\
N1 � I−N0#[ For simple cubic "SC# lattice of spherical inclusions the tensor of e}ective moduli L�
"4[6# is characterized by three elastic moduli]

k� � 0
2
L�0000¦

1
2
L�0011\

m� � L�0101\

m½� � 0
1
L�0000−

0
1
L�0011\ "5[0#

where the sti}ness components are given with respect to a coordinate system whose base vectors
are normal to the faces of the unit cell[ In the interest of obtaining maximum di}erence between
the e}ective properties\ estimated by the di}erent methods we will consider the examples for hard
inclusions "n"9# � n"0# � 9[2\ m"0#:m"9# � 0999# as well as for the voids "L"0# 0 9#\ and a number of
values of the volume concentration of inclusions[ The local elastic moduli "5[0# are computed by
analytical method by Sangani and Lu "0876#\ Nunan and Keller "0873#\ and Kushch "0876# as
well as by the formulae "4[02# and "4[04# "see Tables 0 and 2#^ here n"i# 0"2k"i#−1m"i##:"5k"i#−1m"i##\
"i � 9\ 0# is a Poisson ratio[

According to Tables 0 and 2\ the error of eqn "4[02# is maximum for c � 9[4 and does not exceed
29 and 12) for the rigid inclusions and for the voids\ respectively^ similar errors for c � 9[3 do
not exceed 03 and 08)\ respectively[ Tables 0 and 2 reveal that the method "4[02# performs
quite well "at least for L"0# 0 9# even if c is quite close to limiting packing coe.cient for SC]
cmax � p:5 3 9[41[ The calculation by the approximate variant "4[04# gives contradictory results
for c × 9[24] the component L�0000 oscillates around zero as c increases[ Tables 0 and 2 give the
values L� calculated from formulae "4[02# and "4[04# for spherical RVE with radius r14 � 14=e0=\
containing 14 layers of inclusions around a considered inclusion vi[ Similar results for elastic moduli
L� "4[02# estimated for di}erent radii of RVE are represented in Table 1 and 3[ The RVE with
r0 � =e0=\ r2 � 2=e0=\ and r5 � 5=e0= have one\ three\ and six layers of surrounding inclusions around

Table 0
The overall elastic constants of SC arrays of voids] "SL# Sangani and Lu "0876#\ "P# point approximation "4[04#\ "H0#
the proposed method "4[02#

k�:k"9# m�:m"9# m½ :m"9#

c SL P H0 SL P H0 SL P H0

9[09 9[663 9[663 9[663 9[706 9[796 9[701 9[730 9[735 9[730
9[19 9[591 9[593 9[593 9[554 9[509 9[530 9[607 9[632 9[608
9[29 9[353 9[360 9[360 9[443 9[398 9[385 9[597 9[558 9[501
9[39 9[252 9[253 9[253 9[369 9[193 9[268 9[493 9[502 9[401
9[49 9[131 9[165 9[165 9[264 −9[53 9[177 9[283 9[458 9[302
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Table 1
The overall elastic constants of SC arrays of voids estimated by the eqn "4[02# for RVE with the radii r0\ r2\ and r5

k�:k"9# m�:m"9# m½ :m"9#

c r0 r2 r5 r0 r2 r5 r0 r2 r5

9[09 9[663 9[663 9[663 9[796 9[702 9[702 9[735 9[739 9[730
9[19 9[593 9[593 9[593 9[514 9[535 9[532 9[622 9[604 9[606
9[29 9[360 9[360 9[360 9[354 9[494 9[388 9[526 9[593 9[509
9[39 9[253 9[253 9[253 9[224 9[281 9[272 9[437 9[499 9[497
9[49 9[165 9[165 9[165 9[123 9[294 9[183 9[359 9[284 9[396

Table 2
The overall elastic constants of SC arrays of rigid inclusions ] "N# Nunan and Keller "0873# for c � 9[0Ð9[3\ "K# Kushch
"0876# for c � 9[4\ "P# point approximation "4[04#\ "H0# the proposed method "4[02#

k�:k"9# m�:m"9# m½ :m"9#

c N:K P H0 N:K P H0 N:K P H0

9[09 0[079 0[068 0[068 0[105 0[196 0[102 0[163 0[175 0[158
9[19 0[394 0[392 0[392 0[344 0[309 0[340 0[693 0[786 0[589
9[29 0[695 0[580 0[580 0[655 0[597 0[639 1[24 3[021 1[208
9[39 1[062 1[963 1[963 1[14 0[791 1[019 2[63 −00[7 2[196
9[49 2[492 1[509 1[509 2[03 0[888 1[563 5[38 −1[04 3[223

Table 3
The overall elastic constants of SC arrays of rigid inclusions estimated by the eqn "4[02# for RVE with the radii r0\ r2\
and r5

k�:k"9# m�:m"9# m½ :m"9#

c r0 r2 r5 r0 r2 r5 r0 r2 r5

9[09 0[068 0[068 0[068 0[196 0[104 0[103 0[174 0[155 0[157
9[19 0[392 0[392 0[392 0[316 0[347 0[342 0[680 0[556 0[571
9[29 0[580 0[580 0[580 0[571 0[648 0[635 1[697 1[125 1[180
9[39 1[963 1[963 1[963 1[999 1[053 1[023 3[312 1[874 2[020
9[49 1[509 1[509 1[509 1[323 1[663 1[694 6[575 2[747 3[054



V[A[ Buryachenko : International Journal of Solids and Structures 25 "0888# 2726Ð27482741

the considered one\ respectively[ As can be seen from the Tables 1 and 3 the estimations of L�
"4[02# for the RVE with the radii r2 and r5 "at c � 9[4# di}er from presented in the Tables 0 and 2
by 09 and 2) as maximum\ respectively\ i[e[\ the RVE with three layers of inclusions can already
be considered as representative and the principle of locality by Sokolkin and Tashkinov "0873#
holds[ The use of six!layers spherical RVE guarantees at least three!digit accuracy for the voids
and two!digit accuracy for the rigid inclusions[

The analysis of Tables 0Ð3 is an extension summary of the work of Buryachenko and Parton
"0881#\ where the stated problem was investigated[ More recently an analogous result was obtained
by the similar methods by Rodin "0882# as well as by Molinari and Mouden "0885#[ This example
is considered deliberately for the demonstration of high accuracy of the proposed method "4[02#
based on the use of the hypothesis "H0#[ Still\ one could argue that if the hypothesis "H0# is used
for the estimation of e}ective nonlocal properties then the accuracy is satisfactory for many
purposes\ although to our knowledge\ the exact analytical methods has never been actually
implemented in the estimation of nonlocal e}ective properties\ which we will consider now by the
approximate method "3[03# and "4[7#[

Now let us compare the di}erent components of the normalized tensor L�nor 0 09L�:"m"9# =e0=1#
describing the nonlocal properties and obtained by the use of eqns "3[03# and "4[7# for di}erent
radii of the RVE] r5 � 5=e0=\ r8 � 8=e0=\ r14 � 14=e0=[ As can be seen from Table 4 for rigid inclusions
the maximum errors are 07) at r � r5 and 6) at r � r8 compared to the result at r � r14[ Therefore\
for good accuracy "i[e[ 6) error# of a constitutive nonlocal model\ the minimum RVE size is
relatively large] r � 8=e0=[ In the case of rigid inclusions the minimum RVE size required for the
same accuracy of estimated nonlocal parameters is always substantially larger as compared to the
case of voids "see Table 5#[ Tables 4 and 5 show that for the systems considered\ the minimum
RVE size increases with increasing inclusion volume fraction[ Comparing the analysis of Tables
0Ð3 to the Tables 4 and 5 shows that for equal accuracy of e}ective elastic properties for local and
nonlocal response\ the RVE must be larger in the case of nonlocal properties[ This fact is explained
by di}erent behavior at in_nity of integrand functions F"xi−y# and F1"xi−y# "3[5# in the integral
representatives of the local "3[02#\ "4[6# and nonlocal "3[03#\ "4[7# operators\ respectively[

As mentioned above the di}erential representation of the nonlocal operator "4[5# has the

Table 4
The overall normalized nonlocal elastic constants of SC arrays of rigid inclusions estimated by the eqn "4[7# for RVE
with the radii r5\ r8\ and r14

L�nor
000000 L�nor

001100 L�nor
010100

c r5 r8 r14 r5 r8 r14 r5 r8 r14

9[09 9[053 9[055 9[056 −9[948 −9[959 −9[959 −9[957 −9[957 −9[958
9[19 9[764 9[783 9[893 −9[292 −9[201 −9[207 −9[122 −9[124 −9[125
9[29 1[477 1[567 1[614 −9[748 −9[787 −9[807 −9[357 −9[360 −9[362
9[39 4[660 5[956 5[115 −0[660 −0[782 −0[847 −9[638 −9[641 −9[643
9[49 09[26 00[09 00[49 −1[699 −1[870 −2[022 −9[886 −0[992 −0[994
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Table 5
The overall normalized nonlocal elastic constants of SC arrays of voids estimated by the eqn "4[7# for RVE with the
radii r2\ r5\ and r14

L�nor
000000 L�nor

001100 L�nor
010100

c r2 r5 r14 r2 r5 r14 r2 r5 r14

9[09 9[969 9[969 9[969 −9[906 −9[907 −9[907 −9[949 −9[941 −9[942
9[19 9[081 9[081 9[082 −9[930 −9[931 −9[931 −9[026 −9[036 −9[038
9[29 9[219 9[207 9[207 −9[947 −9[947 −9[948 −9[088 −9[100 −9[108
9[39 9[326 9[321 9[320 −9[952 −9[952 −9[953 −9[195 −9[111 −9[121
9[49 9[424 9[416 9[414 −9[943 −9[943 −9[944 −9[045 −9[060 −9[071

disadvantage that is uses the Taylor expansions "3[3# and "3[00# in the RVE about the center x^ it
is sometimes violated in practice[ For instance an in_nite or non!existing derivative of some _nite
order in ðoŁx"x# can take place^ the radius of convergence of Taylor series "3[3# and "3[6# can be
less than the radius of the RVE\ which may cause the slow convergence at an in_nite range for
integral operators[ So in our case\ the integral "3[03# is conditionally convergent\ i[e[ it depends on
the shape of the RVE[ Similar circumstances can lower the feasibility of the Fourier transform
method that is considered in the current paper in su.cient detail deliberately for the demonstration
of disadvantages of this popular method[ For later use we derived the integral form of the nonlocal
operator "3[06# which does not su}er from this limitation\ and which will be considered now[

Let for the sake of de_niteness the composite materials is subjected to a strain gradient along
the direction e2 and only one component ocon

ij "4[09# di}ers from zero]

ocon
ij � 9^ all other ocon

kl 0 9 "kl � i j#[ "5[1#

Finally\ lest it be thought that all nonlocal operators with smooth ðoŁx"x# are straightforward to
solve by the method "3[01# and "4[5#\ we give two counterexamples] a monotonical smooth function

f"x2# � f0"x2# 0 8
"x2:a#3

0¦"x2:a#3
for x2 − 9\

9 for x2 ³ 9\

"5[2#

and an even in_nitely di}erentiable function

f"x2# � f1"x2# 0 0−e−"x2:a#3\ "5[3#

where a is a positive length parameter\ and let c � 9[4[ Clearly f2"x0#\ f ý0"x2# 0 9 and f1"x2#\
f ý1"x2# � 9 at x2 ¾ 9 and x2 � 9\ respectively[ Therefore\ the di}erential approach "4[5# leads to
degenerate results]

ðsŁx"x# 0 9 for x2 ¾ 9\ "5[4#

and
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Fig[ 0[ Normalized nonlocal stresses snon
22 "x2#:"m"9#ocon

22 # as functions of the dimensionless parameter anor] x2:=e2= � 9 "solid
curve#\ 0 "dotted curve#\ 1 "dotÐdashed curve#\ 2 "dashed curve#[

ðsŁx"x# � 9 for x2 � 9\ "5[5#

for the functions f0 "5[2# and f1 "5[3#\ respectively[
Thus the approximation of a nonlocal operator by the second!order di}erential operator might

be too crude even if the driving function "o#x"x# is smooth enough "4[09#\ "5[2# and "5[3#[ At the
same time\ the treatment of indicated functions within the framework of the method of successive
approximations "3[06#\ "4[00# is quite e.cient[ We illustrate the statement made above with the
function f0"x2# "5[2# for rigid inclusions "when the estimations obtained by di}erent methods will
have the maximum dissimilarity from one another#\ and a number of values of a[ Let the tensors
sloc"x# 0 L�ðoŁx"x# and snon"x# 0 ðsŁx"x#−L�ðoŁx"x# be named the local and nonlocal stresses\
respectively[ In Fig[ 0 the 22!components of normalized nonlocal stresses snon

22 "x#:"m"9#ocon
22 # are

plotted as the functions of dimensionless parameters anor 0 a:=e2= for di}erent values of normalized
coordinates xnor 0 x2:=e2= � 9\ 0\ 1\ 2 "layer number#^ c � 9[4[ As can be seen from Fig[ 0\ the
nonlocal stress snon

22 "9#:"m"9#ocon
22 # � 9 and decreases with increasing anor\ notwithstanding the fact\

that according to the formulae "4[5# and "5[2#\ sloc"9# � snon"9# 0 9\ [a × 9[ At the points x2 � =e2=
the nonlocal stress snon

22 "x#:"m"9#ocon
22 # reaches its maximum at anor � 0[54 and equals 7) of the local

stress sloc
22"x#:"m"9#ocon

22 # "x2 � =e2=#[ It should be mentioned that f0"x2# "5[2# is a monotonic function\
however the nonlocal stresses may reverse sign\ which is compatible with changing of the sign of
the second derivation fý0"x2# in the framework of the di}erential approach "4[5#[

For the function f1"x2# one obtains a similar dependence of nonlocal stresses on the parameter
x2 and anor[ Figure 1 shows the di}erent components of normalized nonlocal stresses
snon

ij "x#:"m"9#ocon
ij # "i j � 00\ 22\ 02\ 01# as the functions of parameters anor at x2 � 9\ that is in contrast



V[A[ Buryachenko : International Journal of Solids and Structures 25 "0888# 2726Ð2748 2744

Fig[ 1[ Normalized nonlocal stresses snon
ij "9#:"m"9#ocon

ij # as functions of the dimensionless parameter anor] i j � 00 "solid
curve#\ 22 "dotted curve#\ 02 "dotÐdashed curve#\ 01 "dashed curve#[

to the results obtained by conventional di}erential approach "4[5#] snor"9# 0 9[ In Fig[ 2 the
normalized nonlocal stress snon

22 "9#:"m"9#ocon
22 # as a function of the parameter anor are calculated for

a number of values of the concentration of inclusions c[ Figure 2 shows\ that the nonlocal stresses
snon

22 "9#:"m"9#ocon
22 # increase with increasing reinforcement volume fraction c[

Let us now compare the 22!components of nonlocal normalized stresses snon
22 "x2#:"m"9#ocon

22 #
estimated by both the Fourier transform method "4[5# and by the iteration method "4[8#[ Figure 3
shows the normalized stresses snon

22 "x2#:"m"9#ocon
22 # as the functions of layer numbers

xnor
n 0 xn2:=e2 = � 9\ 20\ 21\ [ [ [ "n � 9\ 20\ 21\ [ [ [ # for the function f1"x2# "5[3# with dimen!

sionless parameter values anor � 0 and anor � 1\ and c � 9[4[ It is evident from Fig[ 3 that for
strongly!varying average strains ðoŁx"x# " for anor � 0# qualitative di}erence between the results
obtained by dissimilar methods occurs[ For more smooth _elds ðoŁx"x# " for anor � 1# the analogous
curves are distinguished from one another\ not nearly so much as in a case anor � 0[ In so doing at
anor � 1 the use of the iteration method leads to the values snon

22 "x02# � 0[05sloc
22"x02#\

snon
22 "x12# � 9[04sloc

22"x12#\ and snon
22 "x92# � 9[92sloc

22"x12#\ although sloc
22"x92# � snon

22 "x92# 0 9\ [a × 9
with the use of Fourier transform method[

A slowly!varying function

f"x2# � f2"x2# 0 cos 0
px2

a 1 "5[6#

used in both methods "4[5# and "4[8# leads to nonlocal normalized stresses snor
22 "x2#:"m"9#ocon

22 # are
close to one another for su.ciently large anor − 1 "see Fig[ 4#[
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Fig[ 2[ The 00!component of normalized nonlocal stresses snon
22 "9#:"m"9#ocon

22 # as functions of the dimensionless parameter
anor at the di}erent concentration of rigid inclusions] c � 9[4 "e#\ c � 9[3 "solid curve#\ 9[2 "dotted curve#\ 9[1 "dotÐ
dashed curve#\ 9[0 "dashed curve#[

Fig[ 3[ Normalized nonlocal stresses snon
22 "x#:"m"9#ocon

22 # as functions of the normalized coordinates xnor calculated by the
use of the Fourier method "4[5# "dotted and dashed curves# as well as by the iteration method "4[8# "solid and dotÐ
dashed curves# for anor � 0 "solid and dotted curves# and anor � 1 "dashed and dotÐdashed curves#[
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Fig[ 4[ Normalized nonlocal stresses snon
22 "x#:"m"9#ocon

22 # as functions of the normalized coordinates xnor calculated by the
use of the Fourier method "4[5# "dotted and dashed curves# as well as by the iteration method "4[8# "solid and dotÐ
dashed curves# for anor � 0 "solid and dotted curves# and anor � 1 "dashed and dotÐdashed curves#[

In conclusion it may be said that the relations obtained depend on the values associated with
the mean distance between inclusions and do not depend on the other characteristic size\ i[e[ the
mean inclusion diameter[ This fact may be explained by the initial acceptance of the hypothesis
"H0# dealing with the homogeneity of the _eld s¹ "x# inside each inclusion[ In the case of a variable
representation of s¹ "x# "x $ vi#\ for instance in polynomial form\ the mean size of the inclusions will
be contained in the nonlocal dependence of microstresses on the average stress ðsŁx"x#[

It should be mentioned that the e}ective constitutive eqn "4[4# was derived for points xi located
su.ciently far from the boundary of the body 1w[ In so doing the relations developed have been
obtained by the use of the whole!space Green|s function "2[2#[ Then use of nonlocal constitutive
relations "4[4# requires more complicated boundary conditions "see for details Kunin and Vaisman\
0869^ Beran and McCoy\ 0869^ Drugan and Willis\ 0885#^ this question is beyond the scope of the
current study[
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